
How to Use Ceedling for
Embedded Test-Driven
Development
with Step-by-Step Examples
Matt Chernosky

http://electronvector.com

Copyright © 2018 Matt Chernosky. All rights reserved.

http://electronvector.com/

Contents
Welcome.. 3
What is Test-Driven Development (TDD)?..4
The Tools.. 5
Installing Ceedling... 6
Creating a New Ceedling Project...7
Example #1: Starting TDD with Ceedling..9

Create a Module..9
Implement a Feature...11
Repeat... 13
Refactoring.. 15

Mocking Hardware Interfaces...17
Example #2: Mocking a Hardware Interface with CMock..19

Create the Temperature Sensor Module...19
Write Our First Test..19
Create the Function Under Test..21
Mock the I2C Interface...21
Implement the Function Under Test...22
Adding Another Test...22

Example #3: Add Unit Tests to Your Current Project with Ceedling..24
Start with an Existing Project...25
Install and Configure Ceedling...26
Create a New Test File..29
Getting it to Build...29
Adding More Source Folders...30
Mocking Hardware Drivers from the Header Files..31
CMock Won't Do Paths to Header Files..32
Including Other Header Files in Our Mocks..33
Enabling Mocks for Extern-ed Function Prototypes...34
Add an Actual Unit Test...36
The Next Steps.. 37

References.. 39
Source Code... 39
Documentation... 39

Ceedling Quick Reference..40
Test Assertions...40
Mock Function Formats...41

How to Use Ceedling for Embedded Test-Driven Development 2

Welcome
Maybe you've heard of Test-Driven Development (TDD), and maybe you've even thought it
seemed like a reasonable idea. If you haven't tried TDD yet though, you really should.

This guide contains step-by-step examples to get you started test driving in C, especially for
embedded software applications.

We'll look at how to use the unit test framework called Ceedling to help us do this. In the first
example, we'll see how to create tests and write the code to make them pass. In the second
example we look at mocking, and learn how to use it simulate our hardware.

All the tests in these examples compile and run on your host PC (with GCC), with no target
hardware needed.

How to Use Ceedling for Embedded Test-Driven Development 3

What is Test-Driven Development (TDD)?
The premise of TDD is that we use the creation of unit tests to incrementally drive the
development of the software. The steps look like:

1. Write a test, and watch it fail.

2. Implement just enough code to make the test pass.

3. Refactor.

4. Repeat.

This allows us to be very clear about what the code is to do, because we've defined every
behavior in a test.

With each iteration you add a bit more functionality to your software, and the tests give you
confidence that you're doing it correctly.

One of the difficulties of unit testing is that it takes some degree of experience to write
testable code. If you write the tests first though, you'll figure out how to make your code
testable while you write it. This means you won't waste your time with this problem at all!

For me, the greatest aspect of TDD is that it takes a big problem to solve (how to implement a
software application) and reduces it to a simple problem (what is the next little thing I need
this software to do). Then I just write a test for that feature, implement it and repeat.

You simply stop when you don't need any more features. And when you do stop, you're
confident that what you have is working exactly how you want it to. It's unlikely that you'll be
spending a lot of time chasing down bugs.

How to Use Ceedling for Embedded Test-Driven Development 4

The Tools
The testing tools used in this example are Ceedling, Unity and CMock. These are the best C
unit test tools available, from the people over at http://www.throwtheswitch.org/.

Ceedling is an automated testing framework for C applications.

In order to do TDD, you need to be able to create and run tests easily since you'll be doing it
all the time. Ceedling provides automatic test discovery, mock generation and test execution,
which makes it the best option for unit testing in C. It also builds and runs tests on the host
PC, so when working on an embedded project we don't have to waste time downloading to
the target.

Unity is the unit test framework provided with Ceedling. It gives us all of our test assertions
constructing our tests.

CMock is the mocking framework used with Ceedling. The mocking framework is what lets us
simulate interactions with other software modules, so that we can test our software units in
isolation.

How to Use Ceedling for Embedded Test-Driven Development 5

http://www.throwtheswitch.org/

Installing Ceedling
Ceedling requires Ruby to run and uses GCC to build each test.

1. Install Ruby

Windows installer: https://dl.bintray.com/oneclick/rubyinstaller/rubyinstaller-2.3.1.exe
Other instructions: https://www.ruby-lang.org/en/documentation/installation/.

Be sure that the Ruby bin folder is in your path, e.g. C:\Ruby23\bin

2. Install Ceedling with the Ruby "gem" tool with the command: gem install ceedling

Installation Error: “certificate verify failed”

I’ve recently had an issue trying to use the “gem” command. It’s a problem with the
RubyGems server (where Ceedling and other gems are hosted). If you get an error
like this:

The quick fix is to install a new certificate into Ruby. Download this certificate file:

https://raw.githubusercontent.com/rubygems/rubygems/master/lib/rubygems/ssl_c
erts/index.rubygems.org/GlobalSignRootCA.pem

and place it into C:\Ruby23\lib\ruby\2.3.0\rubygems\ssl_certs.

Note that your path may be different if you installed to another folder or installed a
different version.

3. If you're on Windows, you'll likely need to install GCC.

I recommend installing with Cygwin (https://cygwin.com/install.html).

When installing be sure to select the "Devel" packages to have GCC installed. Then put
the Cygwin bin folder in your path, e.g. C:\cygwin64\bin.

How to Use Ceedling for Embedded Test-Driven Development 6

ERROR: Could not find a valid gem 'ceedling' (>= 0),
here is why:

Unable to download data from https://rubygems.org/ -
SSL_connect returned=1 errno=0 state=SSLv3 read server
certificate B: certificate verify failed (
https://api.rubygems.org/specs.4.8.gz)

https://cygwin.com/install.html
https://raw.githubusercontent.com/rubygems/rubygems/master/lib/rubygems/ssl_certs/index.rubygems.org/GlobalSignRootCA.pem
https://raw.githubusercontent.com/rubygems/rubygems/master/lib/rubygems/ssl_certs/index.rubygems.org/GlobalSignRootCA.pem
https://www.ruby-lang.org/en/documentation/installation/
https://dl.bintray.com/oneclick/rubyinstaller/rubyinstaller-2.3.1.exe
https://api.rubygems.org/specs.4.8.gz

Creating a New Ceedling Project
Use the ceedling new <projectName> command to create a new project:

$ ceedling new MyProject

create MyProject/vendor/ceedling/docs/CeedlingPacket.pdf

create MyProject/vendor/ceedling/docs/CExceptionSummary.pdf

...

create MyProject/vendor/ceedling/vendor/unity/src/unity.h

create MyProject/vendor/ceedling/vendor/unity/src/unity_internals.h

create MyProject/project.yml

Project 'MyProject' created!

- Tool documentation is located in vendor/ceedling/docs

- Execute 'ceedling help' to view available test & build tasks

This generates a project tree and the configuration files needed to use Ceedling. Project
creation only needs to be done once when starting a project. Important among the created
folders are:

• src: Where all of our source files will go.

• build: Contains anything generated by Ceedling during the build.

• test: Where our unit test files will go.

Now we have a project in the MyProject folder. Note the instructions from the Ceedling
output when we created the project -- we can use ceedling help to show us how to use it:

$ ceedling help

ceedling clean # Delete all build artifacts and
temporary products

ceedling clobber # Delete all generated files (and
build artifacts)

ceedling environment # List all configured environment
variables

ceedling files:header # List all collected header files

ceedling files:source # List all collected source files

ceedling files:test # List all collected test files

ceedling logging # Enable logging

ceedling module:create[module_path] # Generate module (source, header and
test files)

ceedling module:destroy[module_path] # Destroy module (source, header and
test files)

How to Use Ceedling for Embedded Test-Driven Development 7

ceedling paths:source # List all collected source paths

ceedling paths:support # List all collected support paths

ceedling paths:test # List all collected test paths

ceedling summary # Execute plugin result summaries (no
build triggering)

ceedling test:* # Run single test ([*] real test or
source file name, no path)

ceedling test:all # Run all unit tests (also just
'test' works)

ceedling test:delta # Run tests for changed files

ceedling test:path[dir] # Run tests whose test path contains
[dir] or [dir] substring

ceedling test:pattern[regex] # Run tests by matching regular
expression pattern

ceedling verbosity[level] # Set verbose output (silent:[0] -
obnoxious:[4])

ceedling version # Display build environment version
info

How to Use Ceedling for Embedded Test-Driven Development 8

Example #1: Starting TDD with Ceedling
In this example we'll walk through a single TDD micro-cycle, adding a feature by writing a test
and getting it to pass.

Note that a new Ceedling project must have been created as described in the previous section.

Create a Module
Now it's time to write some code. Imagine we're building a car and we want to build a module
to implement the lighting system. We create a module like this:

$ ceedling module:create[lights]

Generating 'lights'...

mkdir -p ./test/.

mkdir -p ./src/.

File ./test/./test_lights.c created

File ./src/./lights.c created

File ./src/./lights.h created

This creates three files: lights.c to implement our module, lights.h to define the public
interface and a test file where we can put the unit tests for it. These files are automatically
created in the correct folders of our tree.

Note: We could also have provided a deeper path in which to create the module, e.g. rake
module:create[electrical/lights].

At this point, we can try running our unit tests with the ceedling command:

$ ceedling

Test 'test_lights.c'

Generating runner for test_lights.c...

Compiling test_lights_runner.c...

Compiling test_lights.c...

Compiling unity.c...

Compiling lights.c...

Compiling cmock.c...

Linking test_lights.out...

Running test_lights.out...

How to Use Ceedling for Embedded Test-Driven Development 9

TEST OUTPUT

[test_lights.c]

 * ""

IGNORED TEST SUMMARY

[test_lights.c]

 Test: test_module_generator_needs_to_be_implemented

 At line (14): "Implement me!"

OVERALL TEST SUMMARY

TESTED: 1

PASSED: 0

FAILED: 0

IGNORED: 1

This tells us that a single test was run and it was ignored.

The module:create operation has used a template to create the test file. Inside the test file
test_lights.c is a single test named test_module_generator_needs_to_be_implemented
which uses a special ignore directive to tell Ceedling to ignore this test. The function looks like
this:

void test_module_generator_needs_to_be_implemented(void)

{

 TEST_IGNORE_MESSAGE("Implement me!");

}

This is the convention for unit tests which Ceedling. Test files have names that start with
test_ and they go in the test folder. Within each of these files, unit tests are functions whose
names start with test_.

Also in the test file are the setUp() and tearDown() functions. These functions are run
before and after each of the test functions in the test file. These functions are yours to use if
you need them.

How to Use Ceedling for Embedded Test-Driven Development 10

Implement a Feature
Now that we have a module for the lights, it's time to add some functionality. In the test-
driven way, we'll first add a test that describes some desired behavior. Say we want this
behavior:

When the headlight switch is off, then the headlights are off.

In this case we're going to replace test_module_generator_needs_to_be_implemented()
with a new test function:

void test_WhenTheHeadlightSwitchIsOff_ThenTheHeadLightsAreOff(void)

{

 // When the headlight switch is off...

 lights_SetHeadlightSwitchOff();

 // then the headlights are off.

 TEST_ASSERT_EQUAL(false, lights_AreHeadlightsOn());

}

What we've done here is define two new functions to implement in the lights module,
lights_SetHeadlightSwitchOff() and lights_AreHeadlightsOn(). We call the first
function to turn the lights off, and then call the second to confirm the state of the headlights.

The TEST_ASSERT_EQUAL() macro is what we use to verify that the value returned from
lights_AreHeadlightsOn() is the expected value (false). This is one of the many macros
available for comparing various types, all of which are explained in the Unity documentation
(https://github.com/ThrowTheSwitch/Unity/tree/master/docs).

Now we can run our tests, but obviously this is going to fail with all kinds of compilation
errors, because these functions don't even exist yet.

$ ceedling

Test 'test_lights.c'

Generating runner for test_lights.c...

Compiling test_lights_runner.c...

Compiling test_lights.c...

...

> Shell executed command:

'gcc.exe -I"test" -I"test/support" -I"src"

 -I"MyProject/vendor/ceedling/vendor/unity/src"

How to Use Ceedling for Embedded Test-Driven Development 11

https://github.com/ThrowTheSwitch/Unity/tree/master/docs

 -I"MyProject/vendor/ceedling/vendor/cmock/src"

 -I"build/test/mocks" -DTEST -DGNU_COMPILER -g

 -c "test/test_lights.c" -o "build/test/out/test_lights.o"'

> And exited with status: [1].

...

ERROR: Ceedling Failed

The next step is to implement the minimum functionality to pass our test. Here is the interface
defined in lights.h:

#ifndef lights_H

#define lights_H

#include <stdbool.h>

void lights_SetHeadlightSwitchOff(void);

bool lights_AreHeadlightsOn(void);

#endif // lights_H

And the implementation in lights.c:

#include "lights.h"

#include <stdbool.h>

void lights_SetHeadlightSwitchOff(void)

{

}

bool lights_AreHeadlightsOn(void)

{

 return false;

}

We can then run our test and see that it passes:

$ ceedling

Test 'test_lights.c'

How to Use Ceedling for Embedded Test-Driven Development 12

Compiling test_lights.c...

Compiling lights.c...

Linking test_lights.out...

Running test_lights.out...

TEST OUTPUT

[test_lights.c]

 * ""

OVERALL TEST SUMMARY

TESTED: 1

PASSED: 1

FAILED: 0

IGNORED: 0

This may sort of feel like we're cheating, since lights_SetHeadlightSwitchOff() doesn't
actually do anything and lights_AreHeadlightsOn() simply returns false, but as we add
more tests we'll continue to add functionality.

Repeat
We can now continue adding “features” to the module until it does every thing that we need it
to -- by adding tests and then writing the code to make them pass. For example we might
want to implement this behavior:

When the headlight switch is on, then the headlights are on.

So, we create an additional test:

How to Use Ceedling for Embedded Test-Driven Development 13

void test_WhenTheHeadlightSwitchIsOn_ThenTheHeadLightsAreOn(void)

{

 // When the headlight switch is on...

 lights_SetHeadlightSwitchOn();

 // then the headlights are on.

 TEST_ASSERT_EQUAL(true, lights_AreHeadlightsOn());

}

If we run this test it will fail because lights_SetHeadlightSwitchOn() doesn't exist yet, but
when we update lights.h:

#ifndef lights_H

#define lights_H

#include <stdbool.h>

void lights_SetHeadlightSwitchOff(void);

void lights_SetHeadlightSwitchOn(void);

bool lights_AreHeadlightsOn(void);

#endif // lights_H

And add the implementation in lights.c:

#include "lights.h"

#include <stdbool.h>

static bool areLightsOn = false;

void lights_SetHeadlightSwitchOff(void)

{

 areLightsOn = false;

}

void lights_SetHeadlightSwitchOn(void)

{

 areLightsOn = true;

How to Use Ceedling for Embedded Test-Driven Development 14

}

bool lights_AreHeadlightsOn(void)

{

 return areLightsOn;

}

Then we can run our tests and watch them both pass:

$ ceedling

Test 'test_lights.c'

Generating runner for test_lights.c...

Compiling test_lights_runner.c...

Compiling test_lights.c...

Linking test_lights.out...

Running test_lights.out...

TEST OUTPUT

[test_lights.c]

 + ""

OVERALL TEST SUMMARY

TESTED: 2

PASSED: 2

FAILED: 0

IGNORED: 0

Refactoring
Every time we get a test to pass, is an opportunity to refactor. Since we have a suite of passing
tests, we can change the code in any way and we'll immediately know if we broke something.
This allows us the ability to freely experiment with improving the code, e.g. to make it simpler
or easier to understand.

How to Use Ceedling for Embedded Test-Driven Development 15

Refactoring can also be done to the tests as well. You may notice that as you add more and
more tests, some become redundant or you end up with a lot of duplication across tests.
You'll want to keep this under control as you work, so that they tests don't get too difficult to
understand.

How to Use Ceedling for Embedded Test-Driven Development 16

Mocking Hardware Interfaces
How can you unit test your embedded software? What about your hardware dependencies?

The secret is mocking.

We can mock the interfaces to our hardware so that we don't need the actual hardware to
test. This allows us to run our tests more quickly and before the hardware might even be
available.

If we're developing the software for an embedded microcontroller, we're probably going to
be using the microcontroller-provided hardware modules for things like SPI, I2C, timers, etc.

For each of these hardware interfaces, we want to have a corresponding software module
containing the microcontroller hardware dependencies (i.e. hardware register accesses).

How to Use Ceedling for Embedded Test-Driven Development 17

We can then mock each of these hardware interfaces, eliminating our hardware dependencies
but still allowing us to unit test our application. Instead of compiling these tests for the
embedded microcontroller, we compile them for and run them on our host PC.

To help you create your mocks you want to use a mocking framework. The mocking
framework included with Ceedling is CMock. It allows you to create mocks of individual
software modules from their header files. Ceedling improves the experience by
automatically using CMock to generating the mocks that we need.

How to Use Ceedling for Embedded Test-Driven Development 18

Example #2: Mocking a Hardware Interface
with CMock
Note that this example assumes that we already have an existing Ceedling project. See the
section titled Creating a New Ceedling Project if you need help.

Imagine that we want to talk to an external I2C temperature sensor.

Create the Temperature Sensor Module
Let's create a module that will be our temperature sensor driver.

$ ceedling module:create[tempSensor]

Generating 'tempSensor'...

mkdir -p ./test/.

mkdir -p ./src/.

File ./test/./test_tempSensor.c created

File ./src/./tempSensor.c created

File ./src/./tempSensor.h created

Write Our First Test
What is the first thing we want to be able to do with this sensor? I'd like to be able to read the
current temperature value.

Cool. So I take a look at the datasheet for my fictional temperature sensor and I can see that it
has a bunch of 16-bit registers -- each with 8-bit addresses -- one of which is the temperature
register.

How to Use Ceedling for Embedded Test-Driven Development 19

The scaling of the values is such that a register value of 0 is -100.0°C and a register value of
0x3FF is +104.6°C. This makes each bit equivalent to 0.2°C.

Now lets add our first test to test_tempSensor.c. I want to know that when I read a
temperature register value of 0x3FF that the temperature calculated is 104.6.

void
test_whenTempRegisterReadsMaxValue_thenTheTempIsTheMaxValue(void)

{

 uint8_t tempRegisterAddress = 0x03;

 float expectedTemperature = 104.6f;

 float tolerance = 0.1f;

 //When

 i2c_readRegister_ExpectAndReturn(tempRegisterAddress, 0x3ff);

 //Then

 float actualTemperature = tempSensor_getTemperature();

 TEST_ASSERT_FLOAT_WITHIN(tolerance, expectedTemperature,

 actualTemperature);

}

First we set up some variables to hold our expected values. Then in the "when" clause, we
need to simulate (or mock) the I2C module returning a value of 0x3ff on a read of the
temperature address.

For the moment, we pretend that there is another i2c module (it doesn't actually exist yet)
which handles the I2C communication with the temperature sensor. This is where our
hardware dependent code will eventually go.

So, the i2c_readReadgister_ExpectAndReturn function is actually a mock function used to
simulate a call to a function called i2c_readRegister in the i2c module. We'll come back to
this in a moment.

The "then" clause is where we test that the tempSensor module actually returns the correct
temperature when we call tempSensor_getTemperature. This function doesn't exist yet
either.

How to Use Ceedling for Embedded Test-Driven Development 20

Create the Function Under Test
Lets create the tempSensor_getTemperature function with a dummy implementation:

tempSensor.h:

 # ifndef tempSensor_H

 # define tempSensor_H

 float tempSensor_getTemperature(void);

 # endif // tempSensor_H

tempSensor.c:

 # include "tempSensor.h"

 float tempSensor_getTemperature(void)

 {

 return 0.0f;

 }

Mock the I2C Interface
If we try and run the test now, the compiler will complain that it doesn't know about the
i2c_readReadgister_ExpectAndReturn mock function. This is because the
i2c_readRegister function doesn't exist and we haven't yet told Ceedling to mock it.

We don't actually need to implement this function however. It's enough to declare the
function prototype in a header file and tell Ceedling to mock it with CMock.

Create the header file, i2c.h:

ifndef i2c_H

define i2c_H

include <stdint.h>

uint16_t i2c_readRegister(uint8_t registerAddress);

endif // i2c_H

The way we tell Ceedling to mock this module is to add this line to test_tempSensor.c:

How to Use Ceedling for Embedded Test-Driven Development 21

include "mock_i2c.h"

This tells Ceedling: You know the i2c.h header you see over there? Well... use CMock to generate
the implementation and compile it in for us, okay?

When CMock gets a hold of the header file it looks at all the functions defined there and
generates several mock functions for each... including the
i2c_readRegister_ExpectAndReturn function we used in the test. This mock function
appends an additional argument to the original i2c_readRegister function, which is the
value we want the function to return to the calling function.

For more details on all the mock functions available with CMock, see the CMock
documentation at:
https://github.com/ThrowTheSwitch/CMock/blob/master/docs/CMock_Summary.md#generat
ed-mock-module-summary.

Implement the Function Under Test
Now we can implement the logic for our tempSensor_getTemperature function. Our new
tempSensor.c is:

include "tempSensor.h"

include "i2c.h"

include <stdint.h>

float tempSensor_getTemperature(void)

{

 uint16_t rawValue = i2c_readRegister(0x03);

 return -100.0f + (0.2f * (float)rawValue);

}

If we run our test, it should pass now.

Adding Another Test
We'll next want to add more tests for other possible return values from i2c_readRegister.
This is easily done by changing the return value provided to the mock function.

How to Use Ceedling for Embedded Test-Driven Development 22

https://github.com/ThrowTheSwitch/CMock/blob/master/docs/CMock_Summary.md#generated-mock-module-summary
https://github.com/ThrowTheSwitch/CMock/blob/master/docs/CMock_Summary.md#generated-mock-module-summary

For example, to test that the minimum temperature value is read correctly:

void
test_whenTempRegisterReadsMinValue_thenTheTempIsTheMinValue(void)

{

 uint8_t tempRegisterAddress = 0x03;

 float expectedTemperature = -100.0f;

 float tolerance = 0.1f;

 //When

 i2c_readRegister_ExpectAndReturn(tempRegisterAddress, 0x0);

 //Then

 float actualTemperature = tempSensor_getTemperature();

 TEST_ASSERT_FLOAT_WITHIN(tolerance, expectedTemperature,

 actualTemperature);

}

Now we have a driver for an external hardware device that we can test without any of
the hardware. We can continue to develop the driver — adding more tests and features —
by building and testing on our host PC.

By putting all of the microcontroller-dependent I2C operations into their own module, we
easily mocked them with Ceedling and CMock. In fact, we didn't even have to implement this
module yet — we just had to define its interface in the header file.

Using our mocks, we created unit tests that verify the behavior of our temperature sensor
driver. As the rest of our application is developed, we can easily run these unit tests at
any time to make sure the driver will still work correctly.

How to Use Ceedling for Embedded Test-Driven Development 23

Example #3: Add Unit Tests to Your Current
Project with Ceedling
You want to try unit testing your embedded software but there's a problem — you've got an
existing project and a whole lot of code already written. Maybe it's even embedded legacy
code.

You can build, load and run your application just fine from your IDE. But where do the tests go
and how do you run them? And what does it mean for your existing project?

Well, it turns out that you can add Ceedling to your project and run it independently from
your IDE and release build.

The test code (and framework) will be isolated from your production code and won't interfere
with your release builds. This allows you to experiment with unit testing... without messing
with the rest of your team.

Using Ceedling like this is the quickest way to get Unity and CMock set up to test your code.
Don't worry about integrating with Eclipse (or whatever IDE you're using) yet -- just get your
tests running from the command line first.

Typically, you have some source files that your IDE compiles into a release build that can be
run on the target:

To add unit testing support to this project you can set up Ceedling to run in parallel from the
same source files. You write the tests in separate test files, and then Ceedling uses GCC
(instead of your target compiler) to build tests that you run on your host PC.

These test binaries are built in their own build folder so they don't interfere with your existing
release configuration. The tests are executed independently from your IDE by running just a
few simple commands from the command prompt.

How to Use Ceedling for Embedded Test-Driven Development 24

Start with an Existing Project
In this exercise I'm using an example project for the TI Tiva C Series LaunchPad development
board. It's a simple little board with an ARM Cortex-M4.

The example is based on TI's "blinky" project, which just blinks an LED. We'll be modifying this
code as we progress, but you can find the starting point for this exercise here on GitHub.

The project source consists of a main loop in blinky.c and an LED driver in led.c. The main()
loop just calls into the LED driver with led_turn_on() and led_turn_off() to do the
blinking:

This project also has all of the "junk" in it that you'd expect when using an IDE. In fact it has
project settings and build folders for Keil, IAR or Code Composer Studio (TI's own free Eclipse-

How to Use Ceedling for Embedded Test-Driven Development 25

https://github.com/ElectronVector/add-ceedling-to-existing-project/tree/original-project-fixed

based IDE). Here's a simplfied view of what this mess looks like (some files are omitted for
brevity):

Notice here that the source files are all mixed-in with other types of files here. I am not a fan
of this nonsense... but this is pretty common especially with IDEs from embedded vendors. I
much prefer the convention of putting all the source in it's own folder. This is cleaner, makes
the project tree easier to understand, and also makes it easier to configure Ceedling. We'll
revisit this a little later.

For now though — since we're just getting started — we'll leave everything as it is here and
install Ceedling along side of it. That way we won't break anything in this existing project.

Install and Configure Ceedling
Before you can add Ceedling to your project you'll need to install Ceedling on your system.
This also requires installing Ruby and GCC. See the earlier sections of this guide for help with
this.

Once Ruby, GCC and Ceedling are installed, the first step is to install Ceedling into the existing
project. This is done from the command line.

WARNING: This is going to dump a bunch files into your project. As with any project changes
make sure you've got a backup somewhere — preferably in source control.

Ceedling has a new command for creating "new" projects. It's not obvious, but you can also
use new to install Ceedling into an existing project. Let's check it out.

So from the command line, go in to the parent folder of your project. In this case, it's the
folder above our blinky project. From there you'll run ceedling new blinky (since our
project is in a folder named "blinky"). This will install Ceedling into your existing project folder
by creating some new files and folders:

How to Use Ceedling for Embedded Test-Driven Development 26

projects> ceedling new blinky

Welcome to Ceedling!

 create blinky/vendor/ceedling/docs/CeedlingPacket.pdf

 create blinky/vendor/ceedling/docs/CExceptionSummary.pdf

 ...

 create blinky/vendor/ceedling/vendor/unity/src/unity_inte...

 create blinky/project.yml

Project 'blinky' created!

- Tool documentation is located in vendor/ceedling/docs

- Execute 'ceedling help' to view available test & build tasks

Now you can drop into the blinky project folder and run Ceedling
with ceedling test:all. We've haven't created any tests yet though,
so no tests are actually going to execute:

projects> cd blinky

projects\blinky> ceedling test:all

OVERALL TEST SUMMARY

No tests executed.

Ceedling just added these files and folders to the project:

• build: This is where the tests are built.

• src: This is where Ceedling expects to find your source code.

• test: This is where your unit tests will go.

• vendor: This is where the Ceedling source files are.

• project.yml: This is the configuration file for Ceedling.

How to Use Ceedling for Embedded Test-Driven Development 27

Notice that Ceedling expects the source code to be in the src folder. It's time to move the
source code into the src folder. For blinky, this means moving blinky.c, led.h and led.c.
Unfortunately this might require some changes in your IDE to handle this new folder in the
project tree, but this is the best way to set up your project.

How to Use Ceedling for Embedded Test-Driven Development 28

Note that you can have any folder tree that you want below src, so you can move any existing
source folders in there as well.

Ceedling Tip: You can confirm that Ceedling knows about your source files by running
ceedling files:source:

projects\blinky> ceedling files:source

source files:

 - src/blinky.c

 - src/led.c

file count: 2

Yeah! Now Ceedling is installed in our project and ready to go.

Create a New Test File
Now that Ceedling is installed, it's time to add some tests. The LED driver (led.c) is a good
candidate here because it's an isolated module. Before we can add tests we'll need a new test
file to put the them in.

Ceedling makes it easy to create the test files for existing modules with its module:create
command. Typically this command creates a .c, .h and a test file for a new source module. If a
file already exists though, the file is left untouched. This means we can use it to easily create a
test file for led.c:

projects\blinky> ceedling module:create[led]

Generating 'led'...

mkdir -p ./test/.

mkdir -p ./src/.

File ./test/./test_led.c created

File ./src/./led.c already exists!

File ./src/./led.h already exists!

The test file it created is test/test_led.c. This is built from a template that includes the header
files and the setUp() and tearDown() functions needed by any test. This saves us the time of
having to manually copy/paste/edit this from another test file.

Getting it to Build
Now that we have a test file for our LED module, we need to get it to build. Here's where the
real fun begins! In this step we're going to chase down a bunch of errors as we try to find the
"seams" of the LED module so that we can test it in isolation.

How to Use Ceedling for Embedded Test-Driven Development 29

This is going to involve setting up some mocks and configuring Ceedling. We're just going to
read the error messages and use them to figure out what needs to be fixed at each stage.

Adding More Source Folders
After adding our first test file test_led.c, if we try to run the tests we get our first error:

projects\blinky> ceedling test:all

Test 'test_led.c'

Generating runner for test_led.c...

Compiling test_led_runner.c...

Compiling test_led.c...

Compiling unity.c...

Compiling led.c...

src/led.c:5:27: fatal error: inc/hw_memmap.h: No such file or
directory

 #include "inc/hw_memmap.h"

 ^

If we take a look at led.c it includes a couple files from our processor library: hw_memmap.h
and gpio.h. These are driver files provided by TI for controlling the GPIO:

#include "led.h"

#include <stdint.h>

#include <stdbool.h>

#include "inc/hw_memmap.h"

#include "driverlib/gpio.h"

void led_turn_on(void)

{

 GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_2, GPIO_PIN_2);

}

void led_turn_off(void)

{

 GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_2, 0);

}

How to Use Ceedling for Embedded Test-Driven Development 30

When I installed TivaWare, these files were installed to C:\ti\TivaWare_C_Series-2.1.2.111 but
Ceedling thinks that all of our source files are in the src folder. We need to tell Ceedling how
to look in this other folder for source as well.

Ceedling is configured in the project.yml file. This is a YAML file that Ceedling loads each time
it is run. In project.yml there is a section for :paths: which includes settings for :test:,
:source:, and :support:. You add another source path (like C:\ti\TivaWare_C_Series-
2.1.2.111) by adding another path to the :source: list:

:paths:

 :test:

 - +:test/**

 - -:test/support

 :source:

 - src/**

 - C:\ti\TivaWare_C_Series-2.1.2.111 # The new source path.

 :support:

 - test/support

Mocking Hardware Drivers from the Header Files
With the source path for the TI drivers set, we can try to run Ceedling again:

projects\blinky> ceedling test:all

Test 'test_led.c'

Generating runner for test_led.c...

Compiling test_led_runner.c...

Compiling test_led.c...

Compiling unity.c...

Compiling led.c...

Compiling cmock.c...

Linking test_led.out...

build/test/out/led.o: In function `led_turn_on':

projects/blinky/src/led.c:10: undefined reference to `GPIOPinWrite'

Now that Ceedling can find driverlib/gpio.h, it knows that it needs to link in a GPIOPinWrite
function. Now, we're not going use the real function since we're running on the host PC. So
we need to mock it. We can mock all of the functions in gpio.h in our test by adding
#include "mock_gpio.h" to test_led.c:

How to Use Ceedling for Embedded Test-Driven Development 31

#include "unity.h"

#include "led.h"

#include "mock_gpio.h" // This will mock the functions in
driverlib/gpio.h.

void setUp(void)

{

}

void tearDown(void)

{

}

void test_module_generator_needs_to_be_implemented(void)

{

 TEST_IGNORE_MESSAGE("Implement me!");

}

CMock Won't Do Paths to Header Files
Now we're getting somewhere! Let's try running Ceedling again:

projects\blinky> ceedling test:all

Test 'test_led.c'

ERROR: Found no file 'gpio.h' in search paths.

rake aborted!

Oh, so Ceedling can't find driverlib/gpio.h so that it can mock it. Remember how we
included mock_gpio.h in the test? Well Ceedling is looking in all of its configured source
folders for gpio.h, not driverlib/gpio.h. We need add the driverlib folder to the source paths
so that it can find gpio.h in there:

How to Use Ceedling for Embedded Test-Driven Development 32

:paths:

 :test:

 - +:test/**

 - -:test/support

 :source:

 - src/**

 - C:\ti\TivaWare_C_Series-2.1.2.111

 - C:\ti\TivaWare_C_Series-2.1.2.111\driverlib # To find gpio.h.

 :support:

 - test/support

Including Other Header Files in Our Mocks
What will the next error be?? Running the tests again gives us this one:

projects\blinky> ceedling test:all

Test 'test_led.c'

Creating mock for gpio...

WARNING: No function prototypes found!

Generating runner for test_led.c...

Compiling test_led_runner.c...

In file included from build/test/mocks/mock_gpio.h:5:0,

 from build/test/runners/test_led_runner.c:30:

C:/ti/TivaWare_C_Series-2.1.2.111/driverlib/gpio.h:153:50: error:
unknown type name 'bool'

 extern uint32_t GPIOIntStatus(uint32_t ui32Port, bool bMasked);

Okay. So this is a problem with using off-the-shelf code from somewhere else (thank you TI).
These TivaWare driver files (like gpio.h) are set up strangely. Even though gpio.h needs
stdbool.h and stdint.h it doesn't actually #include them. As the user, you're supposed to
include them in your source file before including gpio.h.

Unfortunately this means we need to include stdbool.h and stdint.h in our auto-generated
mock files. Fortunately Ceedling has a setting for this in the :cmock: section of project.yml.
We can add an :includes: setting like this:

How to Use Ceedling for Embedded Test-Driven Development 33

:cmock:

 :mock_prefix: mock_

 :when_no_prototypes: :warn

 :enforce_strict_ordering: TRUE

 :plugins:

 - :ignore

 - :callback

 :treat_as:

 uint8: HEX8

 uint16: HEX16

 uint32: UINT32

 int8: INT8

 bool: UINT8

 :includes: # This will add these includes to each mock.

 - <stdbool.h>

 - <stdint.h>

Enabling Mocks for Extern-ed Function Prototypes
With those include files added, let's run Ceedling again and get our next error:

projects\blinky> ceedling test:all

Test 'test_led.c'

Creating mock for gpio...

WARNING: No function prototypes found!

Generating runner for test_led.c...

Compiling test_led_runner.c...

Compiling test_led.c...

Compiling mock_gpio.c...

Compiling unity.c...

Compiling led.c...

Compiling cmock.c...

Linking test_led.out...

build/test/out/led.o: In function `led_turn_on':

projects/blinky/src/led.c:10: undefined reference to `GPIOPinWrite'

Hmmm... we can't find GPIOPinWrite again. If we take a closer look, we can see a WARNING:
No function prototypes found! message when trying to create the mock for gpio.h.

How to Use Ceedling for Embedded Test-Driven Development 34

Again, this Tiva library is strange — this time because all the function prototypes in the header
files are extern-ed:

extern void GPIOPinWrite(uint32_t ui32Port, uint8_t ui8Pins, uint8_t
ui8Val);

By default Ceedling/CMock won't mock functions labeled extern. We need to tell CMock to
mock these functions by adding the :treat_externs: setting:

:cmock:

 :mock_prefix: mock_

 :when_no_prototypes: :warn

 :enforce_strict_ordering: TRUE

 :plugins:

 - :ignore

 - :callback

 :treat_as:

 uint8: HEX8

 uint16: HEX16

 uint32: UINT32

 int8: INT8

 bool: UINT8

 :includes:

 - <stdbool.h>

 - <stdint.h>

 :treat_externs: :include # Now extern-ed functions will be mocked.

Hooray! Now our test will finally build, and we can actually run the tests:

projects\blinky> ceedling test:all

Test 'test_led.c'

Creating mock for gpio...

Generating runner for test_led.c...

Compiling test_led_runner.c...

Compiling test_led.c...

Compiling mock_gpio.c...

Compiling unity.c...

Compiling led.c...

Compiling cmock.c...

How to Use Ceedling for Embedded Test-Driven Development 35

Linking test_led.out...

Running test_led.out...

TEST OUTPUT

[test_led.c]

 - ""

IGNORED TEST SUMMARY

[test_led.c]

 Test: test_module_generator_needs_to_be_implemented

 At line (16): "Implement me!"

OVERALL TEST SUMMARY

TESTED: 1

PASSED: 0

FAILED: 0

IGNORED: 1

Add an Actual Unit Test
Setup and configuration is always a difficult part for embedded projects. Now though we've
managed to fight through it... so that we can get down to the business of actually writing
some unit tests.

Since the LED on our board is connected to pin 2 of port F, we might want to test that our
led_turn_on function uses GPIOPinWrite to set pin 2 of port F. We can create a new unit
test function in test/test_led.c and use an expectation to do this:

include "inc/hw_memmap.h"

void test_when_the_led_is_turned_on_then_port_f_pin_2_is_set(void)

{

 // Expect PORTF pin 2 to be set.

 GPIOPinWrite_Expect(GPIO_PORTF_BASE, GPIO_PIN_2, GPIO_PIN_2);

How to Use Ceedling for Embedded Test-Driven Development 36

 // Call the function under test.

 led_turn_on();

}

Note that we needed to #include "inc/hw_memmap.h" to get access to GPIO_PORTF_BASE,
and GPIO_PIN_2.

And if we run our tests now, we can watch it pass:

projects\blinky> ceedling test:all

Test 'test_led.c'

Generating runner for test_led.c...

Compiling test_led_runner.c...

Compiling test_led.c...

Linking test_led.out...

Running test_led.out...

TEST OUTPUT

[test_led.c]

 - ""

OVERALL TEST SUMMARY

TESTED: 1

PASSED: 1

FAILED: 0

IGNORED: 0

The Next Steps
Now that you have a unit test framework set up for your project, you’re ready to start
incrementally adding tests where you can — and gradually make your embedded software
better.

How to Use Ceedling for Embedded Test-Driven Development 37

You should consider trying to have tests for any new code you're writing, but do what you
can. Are you chasing a bug? See if you can create a failing test for it first. Then make it pass.
Bam, bug fixed!

Also — to make it easier to run the tests — you could set up your IDE to run ceedling
test:all when you press a keyboard shortcut. Better yet, you could set it up to run
ceedling test:<your_current_file> (with the current file in your editor). This only runs
the tests for the file that your working on. Eventually when you have many more tests, this will
be a lot faster.

How to Use Ceedling for Embedded Test-Driven Development 38

References
Source Code
The source code used in these examples is available on GitHub.

Example 1 https://github.com/ElectronVector/try-tdd-with-ceedling

Example 2 https://github.com/ElectronVector/mocking-hardware-ceedling-cmock

Example 3 https://github.com/ElectronVector/add-ceedling-to-existing-project

Documentation

Ceedling https://github.com/ThrowTheSwitch/Ceedling/blob/master/docs/CeedlingP
acket.md

Unity https://github.com/ThrowTheSwitch/Unity

CMock
https://github.com/ThrowTheSwitch/CMock/blob/master/docs/CMock_Sum
mary.md

How to Use Ceedling for Embedded Test-Driven Development 39

https://github.com/ElectronVector/add-ceedling-to-existing-project
https://github.com/ThrowTheSwitch/CMock/blob/master/docs/CMock_Summary.md#generated-mock-module-summary
https://github.com/ThrowTheSwitch/CMock/blob/master/docs/CMock_Summary.md#generated-mock-module-summary
https://github.com/ThrowTheSwitch/Unity
https://github.com/ThrowTheSwitch/Ceedling/blob/master/docs/CeedlingPacket.md
https://github.com/ThrowTheSwitch/Ceedling/blob/master/docs/CeedlingPacket.md
https://github.com/ElectronVector/mocking-hardware-ceedling-cmock
https://github.com/ElectronVector/try-tdd-with-ceedling

Ceedling Quick Reference

ceedling new <project-name> Create a new Ceedling project named
<project-name>.

ceedling help Show all available Ceedling commands for the
project.

ceedling module:create[<module-
name>]

Create a new module named <module-name>.
Creates a source file, header file and unit test
file.

ceedling module:destroy[<module-
name>]

Delete an existing module named <module-
name>.

ceedling
Run all unit tests in the project (the same as
ceedling test:all) this is the default
operation.

ceedling test:all Run all unit tests in the project.

ceedling test:<module-name> Run only the unit tests for this module.

ceedling clobber Delete everything created during the build of
the tests. Like cleaning, but more.

Test Assertions
TEST_ASSERT(condition) Pass if the condition is true.
TEST_ASSERT_TRUE(condition) Pass if the condition is true.
TEST_ASSERT_FALSE(condition) Pass if the condition is false.
TEST_FAIL() Fail the test immediately.
TEST_IGNORE() A test containing this statement is ignored.

TEST_ASSERT_FLOAT_WITHIN(
 delta, expected, actual)

Pass if the two float value are within delta of
each other.

How to Use Ceedling for Embedded Test-Driven Development 40

TEST_ASSERT_EQUAL_STRING(
 expected, actual)

Pass if the two null-terminated strings match.

TEST_ASSERT_EQUAL_STRING_LEN(
 expected, actual, len)

Pass if the two strings match up to len.

TEST_ASSERT_NULL(pointer) Pass if the pointer is a null pointer.
TEST_ASSERT_NOT_NULL(pointer) Pass if the pointer is not a null pointer.
TEST_ASSERT_EQUAL_MEMORY(
 expected, actual, len)

Pass if the two regions of memory match.

TEST_ASSERT_EQUAL_INT(
 expected, actual)

Pass if the two signed integers match.

TEST_ASSERT_EQUAL_UINT(
 expected, actual)

Pass if the two unsigned integers match.

TEST_ASSERT_EQUAL_INT_ARRAY(
 expected, actual, elements)

Pass if the two arrays match.

_MESSAGE

_MESSAGE can appended to any of the other
test assertions. Then there is on additional
argument at the end of the argument list
which is a string to be printed if the test fails.

For the complete list of test assertions, see the Unity documentation at:
https://github.com/ThrowTheSwitch/Unity.

Mock Function Formats
Original Function CMock Generated Expect Function

void func(void) void func_Expect(void)

void func(params) void func_Expect(expected_params)

retval func(void) void func_ExpectAndReturn(retval_to_return)

retval func(params) void func_ExpectAndReturn(expected_params,
retval_to_return)

For the complete list of available mock functions, see the CMock documentation here:
https://github.com/ThrowTheSwitch/CMock/blob/master/docs/CMock_Summary.md#generat
ed-mock-module-summary.

How to Use Ceedling for Embedded Test-Driven Development 41

https://github.com/ThrowTheSwitch/CMock/blob/master/docs/CMock_Summary.md#generated-mock-module-summary
https://github.com/ThrowTheSwitch/CMock/blob/master/docs/CMock_Summary.md#generated-mock-module-summary
https://github.com/ThrowTheSwitch/Unity

	Welcome
	What is Test-Driven Development (TDD)?
	The Tools
	Installing Ceedling
	Creating a New Ceedling Project
	Example #1: Starting TDD with Ceedling
	Create a Module
	Implement a Feature
	Repeat
	Refactoring

	Mocking Hardware Interfaces
	Example #2: Mocking a Hardware Interface with CMock
	Create the Temperature Sensor Module
	Write Our First Test
	Create the Function Under Test
	Mock the I2C Interface
	Implement the Function Under Test
	Adding Another Test

	Example #3: Add Unit Tests to Your Current Project with Ceedling
	Start with an Existing Project
	Install and Configure Ceedling
	Create a New Test File
	Getting it to Build
	Adding More Source Folders
	Mocking Hardware Drivers from the Header Files
	CMock Won't Do Paths to Header Files
	Including Other Header Files in Our Mocks
	Enabling Mocks for Extern-ed Function Prototypes
	Add an Actual Unit Test
	The Next Steps

	References
	Source Code
	Documentation

	Ceedling Quick Reference
	Test Assertions
	Mock Function Formats

